预测光谱数据的实例
tidymodels
是一组用于建立统计和机器学习模型的R包,它可以处理各种类型的数据,包括光谱数据。以下是一个简单的示例,说明如何使用主成分分析(PCA)和随机森林回归在tidymodels
中对光谱数据进行预测。
# 加载必要的包
library (tidymodels)
── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
✔ broom 1.0.5 ✔ recipes 1.0.9
✔ dials 1.2.0 ✔ rsample 1.2.0
✔ dplyr 1.1.4 ✔ tibble 3.2.1
✔ ggplot2 3.4.4 ✔ tidyr 1.3.0
✔ infer 1.0.5 ✔ tune 1.1.2
✔ modeldata 1.2.0 ✔ workflows 1.1.3
✔ parsnip 1.1.1 ✔ workflowsets 1.0.1
✔ purrr 1.0.2 ✔ yardstick 1.2.0
── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
✖ recipes::step() masks stats::step()
• Search for functions across packages at https://www.tidymodels.org/find/
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ forcats 1.0.0 ✔ readr 2.1.4
✔ lubridate 1.9.3 ✔ stringr 1.5.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ readr::col_factor() masks scales::col_factor()
✖ purrr::discard() masks scales::discard()
✖ dplyr::filter() masks stats::filter()
✖ stringr::fixed() masks recipes::fixed()
✖ dplyr::lag() masks stats::lag()
✖ readr::spec() masks yardstick::spec()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# 假设我们有一个名为spectra的数据框,其中有100列表示光谱特征,最后一列是我们想要预测的响应变量
set.seed (123 )
spectra <- as_tibble (matrix (rnorm (10000 ), ncol = 100 ))
Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if
`.name_repair` is omitted as of tibble 2.0.0.
ℹ Using compatibility `.name_repair`.
spectra$ response <- with (spectra, V1 * 2 + V2 ^ 2 + rnorm (nrow (spectra)))
# 划分训练集和测试集
split <- initial_split (spectra, prop = 3 / 4 )
train_data <- training (split)
test_data <- testing (split)
# 定义PCA预处理步骤和随机森林规范
pca_recipe <- recipe (response ~ ., data = train_data) %>%
step_normalize (all_predictors ()) %>%
step_pca (all_predictors ())
rf_spec <- rand_forest () %>% set_engine ("randomForest" , importance = TRUE ) |>
set_mode ("regression" )
# 定义工作流
rf_workflow <- workflow () %>% add_model (rf_spec) %>% add_recipe (pca_recipe)
# 训练模型
rf_fit <- fit (rf_workflow, data = train_data)
# 进行预测
predictions <- rf_fit %>% predict (test_data) %>% bind_cols (test_data)
predictions %>% show ()
# A tibble: 25 × 102
.pred V1 V2 V3 V4 V5 V6 V7 V8
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2.84 -0.560 -0.710 2.20 -0.715 -0.0736 -0.602 1.07 -0.728
2 1.28 1.72 -0.0450 -0.476 0.331 -1.65 -0.0951 -0.211 0.590
3 0.712 -0.446 0.919 -0.0540 2.04 0.227 -0.0792 -0.849 0.748
4 -0.307 0.401 -1.62 1.23 -1.73 0.653 0.882 1.69 -0.0936
5 0.0653 0.111 -0.0556 -0.516 -0.602 -0.123 0.206 -0.0160 -0.0867
6 0.978 -1.97 -0.641 -0.723 -1.26 0.430 0.310 -0.675 -0.287
7 1.85 0.701 -0.850 -1.24 1.68 0.535 -1.04 -1.22 0.373
8 1.54 0.838 0.235 -0.705 -0.0608 2.40 1.24 0.171 0.564
9 1.47 0.426 1.44 1.96 1.02 -0.191 0.605 -0.679 1.74
10 -0.130 -0.295 0.452 -0.0903 -1.19 0.378 -0.506 -1.86 0.881
# ℹ 15 more rows
# ℹ 93 more variables: V9 <dbl>, V10 <dbl>, V11 <dbl>, V12 <dbl>, V13 <dbl>,
# V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>, V19 <dbl>,
# V20 <dbl>, V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>, V25 <dbl>,
# V26 <dbl>, V27 <dbl>, V28 <dbl>, V29 <dbl>, V30 <dbl>, V31 <dbl>,
# V32 <dbl>, V33 <dbl>, V34 <dbl>, V35 <dbl>, V36 <dbl>, V37 <dbl>,
# V38 <dbl>, V39 <dbl>, V40 <dbl>, V41 <dbl>, V42 <dbl>, V43 <dbl>, …
在这个例子中,我们首先生成了一个模拟的光谱数据集,然后执行主成分分析以减少数据的维数,最后使用随机森林进行预测。tidymodels
提供了许多其他的预处理步骤和模型规范,你可以根据自己的需求进行选择和调整。
需要注意的是,对于光谱数据,因为特征数量通常很大(可能达到上千或更多),所以一般需要进行降维或者特征选择,而且也需要选择能够处理高维数据的模型。